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Propagation of fronts in a turbulent medium is investigated in a regime where the interaction between
front and turbulence is scale invariant. The relation governing the front velocity is determined exactly,
including nonlinearities, as a two-parameter family, by imposing covariance by dilatation in functional
space. It differs from usual power laws because scale interaction is nonlocal in scale space, in contrast

with usual systems.

PACS number(s): 64.60.Ak, 47.27.Gs, 82.40.Py

I. INTRODUCTION

Turbulence is well known to enhance transport proper-
ties of passive fields, in particular their mixing. This has
been modeled by the concept of turbulent diffusion. A
similar statistical problem for nonpassive fields is ad-
dressed in this paper by investigating the influence of tur-
bulence on the propagation of autocatalytic fronts. It
turns out to clarify the concept of turbulent front propa-
gation.

Turbulent front propagation may be encountered in a
number of contexts, for instance, in autocatalytic phase
transition within turbulent fluids, especially turbulent
combustion, or in contamination within a turbulent mix-
ing as in epidemic propagation or in some problems of
pollution. It might also be invoked in the transition to
turbulence whenever it occurs through the propagation
of fronts separating laminar and turbulent domains [1].
Its practical interest comes from the large enhancement
of front velocity that can be easily produced with a slight
level of turbulence. It especially determines engine per-
formances in the context of turbulent combustion and the
net epidemic expansion in the case of biological contam-
ination.

Because of important technological implications, tur-
bulent front propagation has been widely considered in
combustion and we shall refer to it often in this paper. A
large range of method, phenomenological [2—-11], heuris-
tic [11-17], and statistical [renormalizations [18,19],
probability density function (PDF) analysis [20,21], frac-
tal analysis [7-10]] has been applied to it but, except the
renormalization approach which will turn out to contra-
dict our results, no rigorous derivation of the turbulent
velocity within well-defined hypothesis has been under-
taken. This has resulted in a confused situation where a
lot of incompatible laws compete without any definite cri-
terion for validating them.

In order to clarify this situation, we look at this prob-
lem from a different side. Instead of considering it at the
level of field dynamics, we focus here on an important
symmetry, satisfied at least in some regimes, namely,
scale invariance of the front-turbulence interaction, and
we show that it suffices for determining the exact tur-
bulent velocity by a rigorous analytical method [22]. At
large turbulence, the front velocity then appears propor-
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tional to the turbulence intensity, independently of its
normal velocity so that propagation is thoroughly sup-
ported by turbulence at the maximal possible rate. Al-
though restricted to a scale-invariant regime, these re-
sults provide an unambiguous basis for confrontation
with experiments and a promising ground for a later
treatment of the corrections which should arise when
scale invariance is broken.

Our paper is organized as follows. We first lay stress in
Sec. II on an essential property that has to be satisfied by
scale-invariant laws, covariance by dilatation, and we
show through use of definite examples how to obtain co-
variant laws from noncovariant ones. Turning to general
ground, we next solve in Sec. III for scale-invariant laws
of propagation in an exact way. The specificity of front
propagation with respect to scale invariance is pointed
out in Sec. IV. It explains why usual power laws are not
convenient here. Properties of basins of attraction with
respect to dilatation in functional space are determined in
Sec. V and a conclusion about our work is finally given in
Sec. VL.

II. COVARIANCE BY DILATATION

In this section, special emphasis is given on an essential
property of scale invariance, covariance by dilatation,
which has been overlooked so far in this problem. In
phase transition, where scale invariance is encountered at
critical points, this property has been well known in real
space for a long time and has been used to interpret the
phenomenon of critical opalescence. Inspired by this
analogy, we transpose it here in functional space by first
stating the basis of scale analysis of front propagation,
then by using two laws of turbulent combustion to point
out its necessity in scale-invariant regimes and finally by
showing how to apply it in the present context.

A. Scale analysis of front propagation

Let us analyze front propagation with respect to scale
by looking at propagating fronts through windows W; of
various sizes L; (Fig. 1). In scale-invariant regimes at
least, we observe in each of them an effective front propa-
gating in an effective turbulent medium. In the reference
frame where this medium is globally at rest, we define the
velocity Ur,; of effective fronts as the mean front velocity
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FIG. 1. Sketch of a flame front propagating in a turbulent flow. The property of scale invariance considered in this paper concerns
neither the front geometry nor the turbulent flow, but the interaction between them. Effective fronts at scale L; can be defined by
considering front parts F; enclosed in windows W, of given size L, and propagating in an effective medium M.

on the mean normal direction z; in the window W,. At
the Kolmogorov scale Ly, Ur; is nothing but the normal
velocity Uy of the front and, beyond the integral scale of
turbulence L, it is the turbulent front velocity U;:

Urn=Ur, )

Uro=Uy, )
where

(Lo,L,]1=[Lg,L;] - (3)

The velocities Ur; thus a priori differ from scale to
scale and our goal is to determine them with respect to
turbulence. Our basis assumptions will be the following:
effective fronts exist at any scale; their velocity Uy ; is in-
dependent of space and time; turbulence may be modeled
by a family of statistically independent scalars (U;) where

U . =-U
T, N,i+1

= dS.

1 1+1

ovu
i-1
2i= Mg
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FIG. 2. Sketch of turbulent combustion analyzed at two con-
secutive scales. Turbulent flow is modeled by a family of statis-
tically independent scalars U;. The mean direction of front
propagation at scale L; is the normal to effective fronts at scale
L; ;. The turbulent velocity at scale L; is the normal velocity
at scale L; ;.

U/ is expected to be sufficient for describing the front-
turbulence interaction in the scale range [L; _,L;].

As detailed in Appendix A, the coherence of the
description of fronts through windows enclosed one in
the other as Russian dolls imposes that global properties
at scale L; behave as local ones at scale L; , | (Fig. 2). In
particular, the turbulent velocity at a scale L; plays the
role of normal velocity Uy ; ,, at the immediately larger
scale L; . :

Uri=Uyi+i @)
and the mean direction z; of the normals n; at scale L; is
the normal direction s, , ; at scale L, , :

(5)

Zi=nj4q -

We emphasize that relations (4) and (5) represent an irre-
ducible link between neighboring scales.

B. Covariance by dilatation

Let us consider two laws already proposed in studies
on premixed turbulent combustion. Both of them relate
the turbulent velocity Uy, the normal velocity Uy of the
front, and the turbulence intensity U’ [considered here as
the root mean square (rms) of flow fluctuations]:

U )

Lo+ L ®)
U}\" UN

Ur % :

S 7
U, exp U, (7)

The first relation has been obtained by Clavin and Wil-
liams at low-turbulence level, U’ << Uy, [13]. The second,
proposed by Yakhot from a renormalization procedure
[19], intends to extend it to a large-turbulence regime.
Both of them are derived without particularizing any
scale and thus a priori apply to a scale-invariant regime of
the front-turbulence interaction.

In scale-invariant regimes, the validity of a relation is
independent of the length of the scale range in which it is



49 SCALE INVARIANCE IN TURBULENT FRONT PROPAGATION 1111

applied and of its absolute position in scale space. Ac-
cordingly, the relations (6) and (7), defined on [L,,L,],
should also apply to shorter scale ranges and in particular
to any range [L;,L;,,;] with the following correspon-
dence:

Ur—Uri+1 (8)
Uv—Uyi+1=Ur, » ©)
U'——> i’+l . (10)

This property provides a mean for determining any veloc-
ity increase [Ur; ., — Ur,;] and thus, by integration from
L, to L,, the net velocity increase [Ur— Uy]. However,
the relation between U; and Uy obtained this way must
be the same as the original one from which it is derived
(Fig. 3). This strong constraint means that scale-
invariant relations must be covariant by integration in
scale space. It involves the covariance by dilatation since
comparing front propagation in the scale ranges
[L;,L; ] and [Ly,L,] means changing the resolution of
the observation by spatial dilatation or spatial contrac-
tion.

Is this criterion for scale invariance satisfied by the two
above laws? Let us first consider the Clavin-Williams re-
lation at consecutive scales:

U U2
e al (1
UT,k UT,k
UT,kdUT,k=Ul;+1dk . (12)
Integration along the whole scale range 0 < k <n yields
n—1
UR,=Uko+2 3 Uy, (13)
k=0

Scale Space

| T
==
=
-]
i+l ::]::' Y
= ;= ::::
=
=
UN‘ o E=4 UN
Scale Invariance Integration
FIG. 3. Scale invariance in functional space. The axis

represents length scales. Brackets symbolize relations and indi-
cate the scale range in which they apply. In scale-invariant re-
gimes, a relation valid in a large range [L,,L,] must also be so
on any shorter ranges, [L;,L; ], for instance. Then a new rela-
tion in [Ly,L, ] may be deduced by iterative integrations of rela-
tions in elementary ranges [L;,L;,]. Identifying it to the origi-
nal relation from which it is derived provides a necessary re-
quirement for scale invariance which expresses covariance by
dilatation in functional space.

where root mean squares satisfy

n—1

U?=3 Uy, (14)
k=0

U’ being the turbulence intensity in the scale range
[Ly,L,], as involved in relation (6). Applying (1)-(3) and
(14), we finally obtain

Ui=UE:+2U0". (15)

The fact that relation (15) differs from relation (6)
shows that covariance by dilatation is not satisfied. The
Clavin-Williams relation thus makes a difference with
respect to the length of the scale range in which it is ap-
plied: it is not scale invariant. This confirms that it is ap-
proximate and restricted to a low-turbulence level.

Let us now focus attention on the law (15) derived by
renormalization of the Clavin-Williams relation and test
covariance by dilatation on it. Considering it at consecu-
tive scales:

U%,k+l=U72',k+2UI;2+l (16)

and integrating it along the whole scale range 0<k <n,
we obtain relation (13) and then, owing to (14), relation
(15) again. The relation (15) thus does not depend on the
length of the scale range on which it is applied so that no
information on the distance between scales can be ob-
tained by integrating it from scale to scale: it is covariant
by dilatation and actually describes a scale-invariant pro-
cess. Since it is equivalent to the Clavin-Williams rela-
tion at low turbulence level, it corresponds to the exact
extension of this approximate law to the large-turbulence
regime.

Let us apply a similar analysis to the Yakhot relation
(7) by introducing the auxiliary variable w, =Ln(Ur,).
Considering it at consecutive scales, we obtain

2
dw,  Up%

—w, = = 17
W1 ™0™ g exp(2w; ) an
and by integration from L, to L ,:
n—1
exp(2w, )=exp(2w,)+2 3 U, . (18)
k=0

Owing to (1)-(3) and (14), this relation is equivalent to
the scale-invariant relation (15) and thus different from
the Yakhot relation from which it is derived.

The Yakhot relation is then not covariant by dilatation
and, a fortiori, not suitable for describing a scale-
invariant process. In contrast with relation (15), it thus
fails in extending the Clavin-Williams relation to a large-
turbulence regime. The origin of the disagreement with
our derivation traces back to the fact that Yakhot deriva-
tion is not exact but approximate for reasons reported in
Appendix B. However, looking at Yakhot relation at a
coarser resolution by integrating along the scale range
here too gives a scale-invariant relation which surprising-
ly appears to be the same as that obtained by renormal-
ization of the Clavin-Williams relation. This coincidence
will be elucidated in Sec. V.

As revealed by this simple analysis, covariance by dila-
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tation is a subtle requirement of scale invariance capable
of discriminating laws in this problem and of deriving ex-
act relations from approximate ones. On the other hand,
the fact that the scale-invariant relation (15) is simple and
has been obtained by a single integration of both the
above approximate laws, (6) and (7), gives the feeling that
scale invariance might correspond to a simple structure
in functional space. Motivated by this remark, we attack
in the following section the determination of scale-
invariant relations from a general viewpoint and we ob-
tain the family of scale-invariant laws to which the par-
ticular relation (15) belongs.

III. SCALE-INVARIANT LAWS
OF FRONT PROPAGATION

This section is devoted to an exact determination of the
family of scale-invariant laws for turbulent front propa-
gation. We first point out two complementary require-
ments of scale invariance, one of them being covariance
by dilatation as emphasized in Sec. II. We next control
their compatibility with well-known power laws. We
then apply them to the present problem and use the cor-
responding constraints to select scale-invariant laws.

A. Criteria for scale invariance

Let us consider an analogy with gauge invariance in
field theories for deriving two necessary conditions for
scale invariance.

In classical electromagnetism, for instance, a potential
¥ may be introduced for describing electrostatic interac-
tions. As is well known, it is defined with respect to a
reference which has only a relative meaning so that its
absolute value is nonsense. Accordingly, the correspond-
ing physical laws must be invariant by global change of
V: this is the first requirement of a relevant theory. How-
ever, this is not the only one. A more subtle requirement
may be obtained by noticing that, since this reference is
relative, its value at different points of space should be
nonsense independently. Then invariance of physical
laws must be required not only in global changes of ¥ but
also in relative ones [23]. This is the second requirement.
It requires the existence of a potential vector and thus of
magnetism.

In this example, gauge invariance generates two re-
quirements, one absolute and the other relative. Similar
consequences may be derived from scale invariance.

In a scale-invariant system, there must be no way for
obtaining information on length scales, by any means.
This first implies that no absolute scale can be detected
and thus that physical laws involve none of them. This is
the first requirement. It is satisfied in particular by both
the laws (6) and (7) since they involve no dimensional
constant. However, another requirement is usually over-
looked but is at least as essential: no relative values of
length scales must be measurable. This implies that phys-
ical laws must be independent of the distance between the
scales in terms of which they are expressed. This proper-
ty is not satisfied by the laws (6) and (7) since they look
different when the scale range within which they are writ-
ten increases.
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The first requirement corresponds to the need to des-
troy the concept of absolute scale in a scale-invariant sys-
tem and the second to that of destroying the concept of
relative scale. They refer, respectively, to covariance by
absolute scale translation (L; —L;, , where p is indepen-
dent of i) and to covariance by relative scale translation
(L;—L,;,, where p depends on /). When the former co-
variance is satisfied, the latter one reduces to covariance
by dilatation (L;—L,,).

The origin of both these requirements may also be un-
derstood within a quite usual but instructive symmetry:
invariance by translation in real space. The first require-
ment imposes that the corresponding objects are invari-
ant by absolute translation (x —x +p where p is indepen-
dent of x) and the second that they are invariant by rela-
tive translations (x —x +p where p depends on x) (or by
dilatation if the first one is satisfied). However, in this
case, the first requirement is so strong (only straight ob-
jects are allowed) that it contains the second one. As
shown below, the same predominancy occurs regarding
scale invariance when single-variable functions are con-
sidered and this certainly explains why the second re-
quirement is usually overlooked. It will, however, prove
to be essential when multivariable functions are required,
as will be shown for the present problem of front propa-
gation.

B. Single-variable functions

In phase transition or in the Kolmogorov theory of
turbulence at least, the search for scale-invariant laws is
made, explicitly or implicitly, within functions of a single
variable. Then, relevant variables ¥V, at scale L; (tur-
bulence intensity or correlation functions) are assumed to
depend only on the scale at which they are defined, so
that

V.

1

=fo
Vo

L.

1

Lo

) (19)

where the scale L, is used for adimensionalization and
where f, is an unknown function a priori dependent on
L.

Let us apply the two complementary criteria for scale
invariance in order to control their compatibility with
usual power laws.

Covariance by absolute scale translation (L;—L;,,)
implies that the variable V; may also be written

) (20)

with f, independent of p:
f=r 21

This means that the choice of L is arbitrary and thus
that the law (19) contains no absolute scale. This also im-
plies that f satisfies

fx)fy)=f(xy) (22)

and is thus a power law,



49 SCALE INVARIANCE IN TURBULENT FRONT PROPAGATION 1113

f(x)=px*. (23)

Covariance by dilatation (L;—L,,) now requires the
relation (20) to be independent of the distance |i —p| be-
tween scales. This is automatically satisfied as long as f,
is independent of p, i.e., as long as the first requirement is
still satisfied.

Covariance by absolute scale translation thus suffices
for ensuring covariance by dilatation of single-variable
functions and for selecting power laws.

C. Multivariable functions

In turbulent front propagation, velocities Ur,; depend
both on normal velocities Uy ; and on turbulence scalars
U/. Relation (4) then shows that the velocity Ur;_; is
necessary for determining Uy, and thus, by recurrence,
that Uy, is formally dependent on all the velocities at
lower scales Ur ., k <i. A fortiori, it is then also linked
to any Uy, k <i and thus implicitly to any scale L, small-
er than L;:

Uri L, L, L,

UT,O 0L_O’ LO,.“,LO .

(24)

Single-variable functions are then forbidden to describe
turbulent front propagation in scale space. In particular,
simple power laws cannot be invoked in scale-invariant
regimes and a new selection of laws from the two require-
ments of scale invariance must be performed.

D. Assumptions

Our derivation involves six assumptions, three of them
having already been used in scale analysis (Sec. Il A). Let
us state them in the following. Since dilatation means a
change of resolution in scale space, it will appear con-
venient to index resolutions by a superscript (7).

(al) Effective fronts exist at any scale.

(a2) Fronts are passive: they do not modify turbulence
and undergo no instability.

(a3) The normal velocity Uy, is independent of space
and time.

(a4) The front-turbulence interaction in scale ranges
[L;,L; ] is modeled by positive statistically independent
scalars (U;'”). We stress that they may not necessarily
correspond to the turbulence intensity.

(a5) The front-turbulence interaction is local in scale
space so that U} only depends on Uy and on U;".
Then, owing to relation (4),

o)

R
Uri-1

r(r)
i

(r)
(r)
UT,i -1

i

) (25)

where the unknown function ={" a priori depends on both
scales and resolution.

(a6) The function 3" is algebraic near the origin.

Some of the properties of the function 2! may be in-
ferred from the expected effects of turbulence and from
the assumption of passive fronts.

(p1) ="(0)=1. Uniform flows give no velocity
enhancement.

(p2) =" has a positive derivative. Turbulence in-
creases front velocity.

(p3) {7 is continuous. Since fronts are passive, they
undergo no instability. Their behavior and, in particular,
3", are regular.

(p4) = > 1 as derived from (p1) and (p2).

From these properties and assumptions, we may
rewrite Z\"(x), without loss of generality, as

[25-”](x)=1+§x“+x“R,-(”(x) (26)
or
[Z]%x)=1+Bx*+x25"(x) , 27

where R;”(0)=5/"(0)=0 and where a and S, positive, a
priori depend on both i and (r): a=a!”,B=".

In this framework, we shall show that, owing to scale
invariance, &\ and Bi" are independent of i and (r) and
that S{” vanishes. Accordingly, in scale-invariant re-
gimes, Z!" will reduce to the following function 3:

IHx)=1+px“*. (28)

E. Constraints on scale-invariant laws

Let us express the two complementary criteria for scale
invariance within our framework.

Covariance by absolute scale translation implies that
3" is independent of i:

sn=3, (29)

This only requires us to search for scale-invariant laws
within the family of functions 25" whose parameters a, f3,
and S are independent of i. Regarding the laws proposed
in the literature in the scale range [L,,L, ] and interpret-
ed for consecutive scales [L;,L; ], this constraint corre-
sponds to avoiding dimensional constant. It is usually
well taken into account, as for instance in both the laws
(6) and (7).

Covariance by dilatation requires that =” is indepen-
dent of (r):

s=3 . (30)

In contrast with single-scale functions, there is no reason
for this criterion to be fulfilled as soon as the former co-
variance is satisfied. This constraint is thus stronger than
the former one but has been overlooked so far. Let us ex-
press it in the following.

Owing to the definition (25) and (27) of 2\", our start-
ing point is the following law between consecutive scales
where, according to the covariance by absolute scale
translation and by dilatation, a, 3, and S are independent
of k and of (7):

Ul = U BULE + UESms ) 6D
32

ml((q)‘l: U(,.) ’ (32)
T,k

§(0)=0. (33)
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A change of resolution is obtained by integrating (31)
from scale L; to scale L; and then by redefining the scale
space in order that these scales are consecutive (Fig. 4):

[Li)Lj]—)[LhLl—Fl] . (34)

The first operation turns out to implicity remove inter-
mediate scales L,, i <k <j, from scale space and is a
scale reduction. The second operation turns out to re-
move them explicitly and is a scale contraction. Alto-
gether, they correspond to the following dilatation in real
space:

IL,—L,|

x
~, witha=—"———+ (35)
L, —L,|

X —

and yield a renormalization of laws of front propagation.

Scale reduction is performed by simply summing rela-
tion (31) from k=i to k=j —1 and by removing terms
that cancel:

Uyla= UT,"+[32 U;ne + 2 U/eS(m ) . (36)
k=i =i
Scale contraction is performed by simply redefining L,
and L; as consecutive scales L; and L; . Then both the
scale space and the resolution are changed, (r)—(r +1),
so that we obtain the following correspondence:

U(r‘rl UTI , (37)
Uy =uy) (38)
and finally
U(Tfl ll)a U r+1)a+/3 2 U/:(:Lnlwz+ 2 U]z(g_)z]x ) .
(39)

At the new resolution (r +1) and in the new scale

Scale Space

Resolution (r) Resolution (r+1)

! T 1+1
; _— 1

Scale Scale
Reduction Contraction

FIG. 4. Procedure for changing resolution in scale space: a
scale reduction followed by a scale contraction. The first opera-
tion consists in expressing a direct relation between variables at
distant scales L;,L; and the second one in relabeling these scales
as consecutive ones.

Scale Space

Resolution (r) Resolution (r+1)

i+% t’ —> g ll+1

Covariance
by dilatation

FIG. 5. Covariance by dilatation in scale space: since spatial
dilatation corresponds to a change of scale resolution, covariant
relations between consecutive scales must be independent of
scale resolution.

space, the relation covariant to (31) may be written
UTr[++11a — Ulrfl)a+BU (r-r] a4 Ul(r+1)aS(m1(r++1]) ).
(40)

Covariance by dilatation (Fig. 5) imposes equality be-
tween relations (39) and (40) and thus the following con-
straint:

. i-1

— (r+Da _ '(r)a

B U =3 U
k=i

=U/ s mingt) 2 URSS(miy) . (41)

F. Selection of scale-invariant laws

Let us exploit the constraint (41) to select scale-
invariant laws.

Since fronts are passive, turbulence is independent of
the way fronts propagate and thus of front velocities. In
particular, all turbulence scalars U;"?’ are independent of
the front velocity U{/). This property is a fortiori valid
for the left-hand side of (41), and thus for its right-hand
side too. Let us then take the limit U{)— o« in (41) for
determining their common value.

Smce 7> 1 (property p4), Uy} mcreases with k and
all UY w1th i <k tend to mﬁmty w1th USY). Then, since
the turbulence scalars U;'” keep constant ‘as UY) varies,

all variables mj"., vanish in the limit considered here.

Since S(0)=0, this implies that both sides of relation (41)
are zero:
{ jil
UiLe="3 Ul @2)
k=i
il U/i(i)l ¢ ,
S(mnH)= 2 — oo | Stmii) (43)
| Yi+1

The relation (42) specifies the link between turbulence
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scalars at different resolution. It corresponds to their re-
normalization with respect to dilatation.

The relation (43) specifies a property of the functions S
involved in scale-invariant laws. The fact that it is not
satisfied by any function shows that covariance by dilata-
tion is not included in covariance by absolute scale
translation. Let us use it to select scale-invariant laws.

Constant functions S satisfy (43) owing to (42). Let us
show that they are the only ones by consideting both a
turbulence for which no scalar U;” vanish and a non-
trivial dilatation: j —i > 1. We then obtain the following
strict inequalities:

U <Ue? for i<k <j (44)
owing to (42), and
m{,<m{"AY fori<k<j, (45)

since U{/)=UY*" and UY) increases with k. On the
other hand, relations (42) and (43) imply

min[S(m}" )1 <S(m{ V) <max[S(m{") )]

fori<k<j. (46)

Altogether, relations (45) and (46) show that, for any pos-
itive x, S gets smaller as well as larger values than S (x) in
[0,x[:

min[S(§)]=<S(x)<max[S(§)] for £E[0,x][ . 47)

This, of course, might yield a pathological behavior in the
vicinity of the origin, unless S is a constant. In particu-
lar, continuity at the origin is sufficient for selecting con-
stant S, as derived below.

Let us apply the property (47) to both the absolute
maxima and minima of S in [0, «[. Since S is continuous
(property p3), these sets of points are closed and contain
their accumulation points, in particular, their minimum
X min- Owing to (47), their values must then be the lowest
possible one, x ;. =0, so that

min[S(x)]=max[S(x)]=S(0) for x E[0, o] . (48)

The function S is thus a constant, which, owing to
S§(0)=0, vanishes: S=0. This selects as possible fixed
points the following relations, equivalent to (28):

U, = Ui+ BULE 49)

Their covariance by dilatation may finally be checked
straightforwardly. They correspond to the following re-
lation between Ur, Uy, and U":

Ug=Ug+BU" . (50)

The scale-invariant relations (49) correspond to fixed
point of renormalization with respect to dilatation. Since
they involve two parameters a and 8, we shall label them
FP(a,p) in the remainder of the paper. We emphasize
that they are obtained exactly. This in particular con-
cerns their nonlinearity.
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G. Turbulence scalars

In propagation laws (25), the turbulence scalars U/
model the interaction between front and turbulence. A
priori, they might then be different than the rms of the
turbulent flow in contrast with what is usually implicitly
assumed. For instance, they might correspond to mo-
ments of the turbulent flow of order different than two.
Let us clarify them in the following.

In scale-invariant regimes, the relation (42) shows that
turbulence scalars should be additive with respect to the
scale range at a given power a, possibly noninteger. For
a=2, this property is satisfied by second-order moments
of turbulence owing to energy conservation. If they are
chosen to model turbulence in this problem, then a quad-
ratic scale-invariant law corresponding to the fixed point
FP(2,p), i.e., relation (15), is selected. Is it the single pos-
sible one or could other choices for the turbulent scalars
be made in scale-invariant regimes? The answer depends
on the probability density function characterizing the
turbulence and on the statistical meaning of the scalars.

At first, let us consider the maximal velocity |U-z| ; of
the turbulent flow U at scale L; on some direction of
space z. Its spatial and temporal mean satisfies relation
(42) with a=1 and thus provides an example of a choice
alternative to a=2. Let us now consider a turbulence in-
volving a Gaussian PDF, as is natural as far as a single
scalar is assumed to model turbulence. A single moment
of arbitrary order « is then sufficient for describing tur-
bulence and all other ones are proportional to it in adi-
mensionalized forms. Then, restricting ourselves to
Jj=i+2 in relation (42), the unicity of scale-invariant
laws turns out to determine whether there exist different
values a,a’ of the orders of the turbulence moments for
which both the following relations could be simultane-
ously satisfied:

U=l + Uy (51)

1]
Ui = U + U (52

An equivalent problem consists in determining the values
of a and o' for which the following equality might be
satisfied for at least a positive x:

(x¥+1)*=(x*+1)". (53)

The answer is that only a=a' works and thus that a sin-
gle moment of turbulence and a single scale-invariant law
can model the front-turbulence interaction in this case.
In particular, if =2 is chosen owing to energy conserva-
tion, then the only scale-invariant law is the quadratic
fixed point FP(2,5).

However, if the PDF of turbulence is non-Gaussian, as
is now well recognized in most turbulent flows, several in-
dependent scalars might be necessary for modeling the
front-turbulence interaction, for instance, other moments
of turbulence, and our derivation of scale-invariant laws
should then have to be extended.
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H. Asymptotic properties of scale-invariant laws

Let us consider the scale-invariant relation (50) be-
tween Uy, Uy, and U’ in the limit of large turbulence,
U’ >>Uy. Independently of the value of their parameters
a and S, all of them give the same behavior:

Ur=0(U'") for U'>Uy . (54)

Depending on the value of a, U’ might not be the tur-
bulence intensity U, . However, since both are propor-
tional to the magnitude of turbulence, they should
display the same asymptotic behavior:

U'=0(U,

rms

) for U'>Uy . (55)

Altogether, the relations (54) and (55) show that, at
large-turbulence intensity, front velocity follows the tur-
bulence intensity whatever the values of a and 3 are:

U,=0(U,

rms

) for U'>>Uy . (56)

This result corroborates a widely shared expectation
[2,24]. However, it presents the advantage of being based
on an exact derivation from an outstanding property of
the flame-front interaction, scale invariance. It rules out
relations [13-18], yielding

Uy
UN a

n

U ’
Uy

, with n7#1 forU’'>>Uy (57)

or those like the Yakhot relation (7) giving logarithmic
corrections [19]:

—1/2

L for U'>>Uy . (58)

Up=U'l
2y,

It finally demonstrates that any experimental inflection of
the ratio U, /U, at large turbulence, i.e., any experi-
mental bending, must originate from a non-scale-

invariant phenomenon.

IV. CRITICAL SURFACE
FOR TURBULENT FRONT PROPAGATION

Turbulent front propagation differs from usual systems
regarding scale invariance on several accounts: (i) mul-
tivariable functions are required owing to an irreducible
link between consecutive scales, (ii) scale-invariant laws
differ from power laws, and (iii) the search for scale in-
variance in turbulent combustion appears as a controver-
sial topic whereas it usually yields a widely shared agree-
ment in other systems.

It therefore seems that scale invariance displays an
original structure in the present problem and the purpose
of this section is to elucidate it. For this, we compare in
the following the iterative renormalizations by dilatation
of various systems, turbulent front propagation, turbulent
flow, and magnetic systems (chosen here as model of
phase transition), in the same kind of scale space, a func-
tional space. Using the concepts of coherence length and
of critical surface, we then exhibit a fundamental
specificity of turbulent front propagation.
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A. Physical systems in functional space

Let us restate the problem of turbulent front propaga-
tion in order to compare it with other systems on the
same basis.

In the present study, the physical system corresponds
to a process, the interaction between front and tur-
bulence, whose effects are characterized at each scale L;
by functions Z;. They are thus represented by a function-
al P relating length scales L; to functions 2; in functional
space: 2, =P[L;]. These functions are usually expressed
in terms of physical variables (e.g., m;) but may be con-
sidered as implicit functions of scales: £, =2,({L;}). Ac-
cording to this picture, turbulent front propagation ap-
pears, at each resolution, as an abstract object
P={L;L;,P[L;)(L;)}.

This description parallels that performed in real space
for well-known statistical systems, the spatial coordinates
being replaced by length scales. For instance, in magnet-
ic systems, the analogs of length scales L;, functions at
scale L;, Z;, and physical processes creating them, P, are,
respectively, position x, spins s(x), and Hamiltonian H:

(x,s(x),H)=(L,3,,P) . (59)

However, an important difference stands in the nature
of the space in which these systems are described: scale
space for turbulent fronts and real space for magnetic
systems. In order to recover the same space of descrip-
tion, let us introduce scale variables in the latter by
means of correlation functions:

(s )L, 1= (s(x)s(x+L;)), (60)

where (a-b) denotes a space average of the scalar prod-
uct a-b. Then magnetic systems may be represented in
scale space as abstract objects H={L,,L;,{s)[L;])(L;)}
in a way similar to turbulent fronts:

(L,s;, H)=(L,,3,,P), 61

with s;= (s )[L,].

This property may also be extended to turbulent flows
by describing them directly as T={L;,L;, U'[L;](L;)}
where U'[L;]=U/ denotes in a way analogous to (60) the
pair correlation of the one-dimensional (1D) component
U of the flow, i.e., its turbulence intensity at scale L;:

UL )= (UG +L,) 2

(L, U, T)=(L,%,,P)=(L,,s,,H) . 63)

It is now essential to notice that, although correlations
at scale L; a priori depend on any length scales in scale
space in both the above systems, spin lattices or turbulent
flows, they are always assumed to only depend on the
scale at which they are defined. They then correspond to
single-variable functions in contrast with turbulent fronts
where functions depending on several scales are required.
This difference refers to locality or nonlocality in scale
space and may bring important consequences. In partic-
ular, let us show, by introducing the concepts of coher-
ence length and critical surface, that the objects P, H,
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and T describing systems in scale space belong to oppo-
site classes.

B. Critical surfaces

Usually, in condensed-matter physics, the coherence
length £ corresponds to the distance beyond which parti-
cles may be considered as independent, and thus to the
range of effective interaction forces. In the present
framework, it thus corresponds to the correlation dis-
tance on the abstract objects defining systems in scale
space. However, when a dilatation is performed, the new
coherence length, i.e., that observed on the same system
but at the new resolution, reduces with respect to the
original one:

xoX e b (64)
a a
In particular, in scale-invariant regimes, coherence
lengths must be invariant in the transformation (64), ow-
ing to covariance by dilatation. They are thus either zero
or infinity: £=0 or £=o0. Let us determine which value
characterizes the three systems studied above.

In turbulent fronts, functions X;=P[L;] depend not
only on the length scale L; at which they are defined, but
also on smaller scales L; <L;, so that § is not zero. In
particular, in scale-invariant regimes where an infinite
range of scales is required, £ is infinite [Fig. 6(a)]. On the
contrary, in the remaining systems, where correlation

Functional Space Functional Space

< ok
SED GFS
e oSF
EI LFD
= bl s -
o= = = E{J
TEI SFO
Non Local Interaction Local Interaction
g=eo £=0
S_ S 0
Turbulent combustion Turbulent Flow
(a) (b)

FIG. 6. Two opposite kinds of interaction in functional
space. Axes represent length scales. Brackets symbolize corre-
lations between the functions defined at each scale f(e.g.,
2;=P[L;]) and enable us to deduce their range in scale space.
(a) Nonlocal interaction as in turbulent combustion. The coher-
ence length & of the interaction is infinite in scale space: €= .
These systems belong to the critical surface S, . (b) Local in-
teraction as in usual description of turbulent flows. The coher-
ence length £ of the interaction vanishes in scale space: £=0.
These systems belong to the critical surface S,.
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functions (s)[L;] and U’[L,] are assumed to only de-
pend on the scale L; at which they are defined, £ vanishes
[Fig. 6(b)].

Let us now label S & as usual, the sets of systems hav-
ing the same coherence length in scale space (Fig. 7). The
above analysis shows that the three systems considered
here belong either to the critical surfaces S, (turbulent
fronts) or S, (magnetic systems, turbulent flows). Since
no dilatation can make a system go from one of these
critical surfaces to the other, these systems thus belong to
disconnected classes.

This opposition refers in particular to the abstract ob-
jects representing these systems in scale space. In scale-
invariant regimes, they must display a scale-invariant
geometry. In the case of turbulent fronts, they thus cor-
respond to fractals since £ is infinite; in the case of mag-
netic systems and of turbulent flows, to scale-invariant
one-dimensional Euclidean objects since £ vanishes and,
more precisely, since only power laws are then allowed,
to half paraboloids (y =x %, x > 0).

C. Specificity of turbulent front propagation

Turbulent front propagation, hydrodynamic tur-
bulence, and phase transition thus correspond to fully
nonlocal (§=c) or local (§=0) interactions in scale
space and thus to opposite physical situations [Figs. 6(a),
6(b)]. In particular, power-law dependence with respect
to a single scale is forbidden in turbulent combustion in
contrast with usual systems. This specificity explains the
controversies that have occurred in the search for scale-
invariant laws in turbulent combustion: most previous

Fixed Points

/ Power Laws

V-
S ® Kolmogorov
0 Y Flows
/ \ Arbit of a
SE,.' = (P—— system
S \‘
é [ ]
S / . A
Turbulent
Combustion

Fixed Points : FP(a,[3)

FIG. 7. Orbits of renormalization in parameter space: £ de-
creases as far as renormalization proceeds [see relation (64)].
The different attractors (fixed points of S, and S, ) compete to
attract orbits. This legitimates the importance of fixed points in
critical surface S, for near critical conditions (large but finite
coherence length £) even if they are never reached in practice.
Usual systems such as Kolmogorov flows belong to S, but tur-
bulent combustion belongs to S,,. Its scale-invariant relations,
the fixed points of the renormalization procedure, have then no
reason to be power laws.
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works, such as that of Yakhot, for instance [25], restrict-
ed themselves to usual power laws whereas another fami-
ly of scale-invariant laws is required for modeling this
system.

Another specificity concerns the nature of the object
on which scale invariance is applied: a flow or a spin dis-
tribution in turbulence or in magnetic systems in contrast
with a process in front propagation. This difference has
indeed a deeper meaning than a purely formal choice of
description. It refers in fact to different concepts of scale
invariance: scale invariance of the process creating an ob-
ject (flow cascade or front geometry), as considered in
this paper, or scale invariance of these objects once they
have been created. The former point of view appears
more general since it enables one to determine relations
whereas the latter one only solves for variables (e.g., tur-
bulent velocity) within prescribed conditions (e.g., tur-
bulent flow). In particular, the scale-invariant relations
obtained in the present paper apply not only to scale-
invariant objects but also to non-scale-invariant ones,
provided that they are obtained from a scale-invariant
process (e.g., turbulent fronts within non-scale-invariant
flows but a scale-invariant interaction).

V. BASIN OF ATTRACTION
OF SCALE-INVARIANT LAWS

In Sec. II we have observed that approximate laws may
appear scale invariant when viewed at a coarser resolu-
tion. This means that, in functional space, scale-
invariant laws are surrounded by basin of attraction with
respect to renormalization by dilatation. This section is
devoted to studying them.

For the sake of simplicity, we restrict our analysis to
relations already invariant by absolute scale translation.
They thus correspond to functions 3\” independent of
scale L; but not necessarily on the resolution (r):

E(’-HIE(H‘/{ZUT“ . (65)

Examples of such relations may be obtained, as in Sec. II,
by projecting the laws of turbulent combustion which do
not involve dimensional constants in the critical surface
S, by applying them to consecutive scales of an infinite
scale space. With the same assumptions as in Sec. III,
they may be written

Ui «
'“ZJ'I‘TL] =14+Bm"% +m4S " imy ), (66)
Urk |
U
’n](\.ri‘ A ’ (67)
U7
(r)(o)zo , (68)

where a, 3, and S a priori depend on (r), but not on i.
Our goal is to determine the evolution of these laws as
the resolution (#) is modified by dilatation.

A. Invariant by dilatation

Let us perform dilatation in functional space in the
same way as in Sec. III.

Scale reduction on the scale range [L;,L;] gives, by
summation of relation (66) from k =ito k=j — 1,

U(rba_ (r}a+B 2 Uk ’)a+ 2 U’(’)aS m 1) . (69)
k=i

Scale contraction simply requires the redefinition of L;
and L; as consecutive scales L, and L,,, within the
correspondence (37) and (38) between variables at resolu-
tion (r) and (r +1). In addition, guided by results ob-
tained for scale-invariant relations, we impose the same
renormalization of turbulence scalars as that derived in
scale-invariant regimes [relation (42)]. We then obtain

U;r[++‘]) a
U<r+1r =1+Bm" e
j—1 UI:(V) a ’
+3 | | sYmin, (70)
k=i UT,I
Ja = 2 Upna (71)

Relation (71) yields an upper limit for the last term of
(70):

Let us seek its order of expansion w1th respect to m;

Since 2'”>1 (property p4), Uy 1ncreases w1th k.
This, in addition to the facts that Uk >0 (assumption
a4) and UY["V=UY), yields

O<m,\+1§m,‘ﬁ,+ll’. (73)

I(rl a

k+l
r+]

j 1
S(r)(m‘((rll ) ]

(r-+ Da

<m A V%max|SV(m0 ). (72)

r+1)

Relations (68), (72), and (73) then show that the last term
of (70) is of order 0((m,fﬁ” )%).

The renormalized function =" ! thus has the same
first-order expansion as 3'”. This means that a and 3 are
independent of the resolution (r), even for non-scale-

Basin of Cl?v.in - Yakhot
attraction Williams
CIFP(2,P)] #

N

}

FP(2, B)

FIG. 8. Basin of attraction of turbulent combustion. A sin-
gle step renormalization yields the fixed point FP(2,B) from ei-
ther the Clavin-Williams (6) or the Yakhot relation (7) (see Sec.
I1 B). This directly shows that these relations are not scale in-
variant. The fixed point FP(2,5) corresponds to an exact exten-
sion of the approximate relation (6) to a large-turbulence re-
gime, in contrast to relation (7).
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Clavin - Yakhot
Williams
Critical l
Surface : Sm Y
. [ J
/ \
CI[FP(co,B)] FP(c,B) FP(2,P)

FIG. 9. Structure of the critical surface. Basins of attraction
of fixed points FP(a,B) correspond to equivalence classes
C[FP(a,B)] with respect to the equivalence relation ¥ linking
tangent relations at the origin. The Clavin-Williams relation (6)
and the Yakhot relation (7) belong to the same basin of attrac-
tion.

invariant functions and thus that the first-order expan-
sion of 2 is an invariant of its orbit {Z™}. This gives us
a useful method for obtaining the fixed point of renormal-
ization towards which the orbit of an arbitrary function
= might converge. Consider its first-order expansion:

2(x)=1+§x“+o(x) . (74)

If the orbit of = converges towards a fixed point, this
fixed point will be FP{a,B]. This property applies in par-
ticular to relations (6) and (7) and explains the identity of
their fixed point (Fig. 8).

This invariant also enables us to easily clarify the
structure of the critical surface S, by considering the
equivalence relation ¥ according to which relations = are
equivalent if they are tangent near the origin. Then all
the orbits converging towards the same fixed point belong
to the same equivalence class and basins of attraction of
fixed points simply correspond to equivalence classes for
¥ (Fig. 9).

B. Orbit convergence

Is orbit convergence the rule or the exception in the
critical surface? We study this question in Appendix B
and we show that absolute convergence is guaranteed for
very usual conditions on relations £ and on turbulent
flows.

VI. CONCLUSION

We have addressed turbulent front propagation in a
scale-invariant regime. Scale-invariant laws relating
front velocity, normal velocity, and turbulence have been
obtained exactly, including their nonlinearity. They
surprisingly differ from the power laws usually assumed
in other scale-invariant systems. The origin of this
specificity can be traced back to an irreducible link be-
tween consecutive scales in turbulent propagation, ac-
cording to the fact that normal velocity is an essential in-
gredient of front velocity. It makes turbulent front prop-
agation representative of a novel class of scale-invariant

systems for which the interactions in scale space are non-
local.

The salient features of our approach are the following.
Scale invariance does not address the physical objects,
flow or front, but their interaction. In contrast with usu-
al derivations, it thus applies not to variables but to rela-
tions in functional space and then involves a wider appli-
cability, both the front and the flow being unprescribed
(possibly neither scale-invariant nor turbulent). Guided
by an analogy between scale-invariant regimes of tur-
bulent propagation and critical points of phase transition,
we have looked for satisfying covariance by dilatation, a
constraint which has been overlooked so far in this field.
Imposing it on functional space has led us by a simple
algebra to renormalized laws and to fixed points of this
procedure. Skipping the complex analysis of physical
fields and of front dynamics, we have then selected a
two-parameter family of scale-invariant laws, analogous
to power laws in usual systems:

Ug=Ug+BU"™ . (75)

In a given system, the determination of a and 8 may be
obtained easily from expansions at a low-turbulence level.
This provides an interesting means for deriving exact re-
lations from approximate ones in this problem.

The two parameters a,f3 of scale-invariant laws have to
be clarified in each system but, if a Gaussian statistics for
turbulence is assumed, a quadratic relation should be
satisfied. Anyway, independently of the value of these
parameters, all laws (75) yield proportionality of front ve-
locity to turbulence intensity in the large-turbulence lim-
it. This result contradicts some claims that the relation
between Ur and U’ should depart from a straight line at
large turbulence, as in relation (7), for instance [19,25].
According to the present work, this behavior, called
“bending,” might only originate from non-scale-invariant
phenomena.

The validity of scale-invariant laws a priori extends to
any magnitude of turbulence, provided that the actual
system remains scale invariant. However, in practice,
scale-invariant regimes should be bounded to some limit,
indicating the occurrence of some relevant time scale in
the turbulence scale range. In turbulent combustion,
scale-invariant regimes are at least restricted to the so-
called flamelet regime, Uy << Uy, where Uy is the tur-
bulence intensity at the Kolmogorov scale and Uy the
normal velocity of the front. Other causes, more intrin-
sic, might break scale invariance and will be investigated
in detail in further studies on turbulent combustion [26].

Accurate experiments unfortunately lack for allowing
detailed comparison between scale-invariant relations and
actual fronts. In a recent experiment on turbulent com-
bustion, we have sought to remove spurious contributions
to front propagation in order to isolate the relevant front
velocity from our data [27]. Then a good agreement has
been obtained with the scale-invariant law FP(2,A).
Confirmation of this result is desirable before a definitive
conclusion is drawn.

In statistical physics, information about weakly non-
scale-invariant regimes may be obtained by studying the
vicinity of critical points. In the present system, the same
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approach would be worth being followed to clarify the
influence of phenomena breaking scale-invariance by ad-
dressing the vicinity of fixed points in scale space. This
might help to determine whether the laws governing tur-
bulent combustion evolve continuously with respect to
the magnitude of non-scale-invariant phenomena or
whether they show sharp transitions. In the former case,
the present theory would prove to be robust enough for
describing not only scale-invariant regimes but also more
realistic ones.
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APPENDIX A:
SCALE ANALYSIS OF FRONT PROPAGATION

By reference to combustion, we label the medium to-
wards which the front propagates “fresh medium” and
the medium that it leaves behind “burnt medium.” A
scale analysis of front propagation may be performed by
looking at the system at a given time through windows
W, of characteristic size L; (Fig. 1). In each of them one
observes an effective front F; and an effective fresh medi-
um M; and our goal is to define their relevant variables at
each scale and the relations between them.

We assume that the turbulent flow in the fresh medium
may be modeled statistically by a family of vortices of
size L; represented by a family of scalars U/ (Fig. 2). At
each scale L;, integral quantities of effective fronts F;
may be derived in a self-consistent way in windows W/,
for instance, their surface vector S; or the flux of fresh
medium through them, ¢;. On the other hand, defining
local quantities raises the problem of resolution and
yields a formal coupling between scales: at each scale L,,
the largest possible resolution is given by the immediately
smaller scale L; ; so that local variables at a scale corre-
spond to global ones at the immediately smaller scale.
Let us use this property in windows enclosed one into the
other as Russian dolls for relating variables at consecu-
tive scales (Fig. 2).

At each scale L, |, the front surface S, | of effective
fronts corresponds to an elementary surface dS; at the
immediately larger scale L;:

dS,:S,,IfoFHdSP,

so that the front normal n; at scale L; may be defined as

ds; A2
n; ds, (A2)
where dS; = ||dS;||.

Let us now consider the problem of defining a front ve-
locity. It turns out to relate front points at successive
times. Obviously, this cannot be performed in a single
way since the direction of propagation is a nonintrinsic
concept dependent on front parametrization. In particu-
lar, the tangential component of front velocities is arbi-
trary. However, the normal component is not, since the

(A1)

direction of propagation is then prescribed. In any case,
front velocity satisfies nevertheless the same following in-
tegral relation: the flux ¢ of front velocity over a front
surface equals the volumic rate of conversion of ‘“‘fresh”
medium into “burnt” medium.

Let us then consider at scale L; the normal velocities
Uy, of effective fronts with respect to fresh medium
M; . These variables are global at scale L; ;| and thus
constant on windows W;_, and on surface elements
S, ,=dS,. They satisfy

6= [, Uy.ds,,

UN,I = UN n.:

I Ay B

(A3)

(A4)

Let us use them for defining by the following relations,
(AS5) and (A6), the velocity Uy ; of effective fronts at scale
L; as the mean front velocity on the mean normal direc-
tion z;:

U]v.,ffF’dS,:ffF’UN,I-dS,- , (AS5)
U, =Uyp,z; , (A6)
where
(n;)
Zi:r[l(n,?” ) (A7)
[ [, nas,
(n)=—7%7+— (A8)

[ [.ds

Relations (A1) and (A2) show that {n;) is collinear to
n; , so that the mean direction of propagation at scale L;
is the normal direction at the immediately larger scale

Z,=n; . . (A9)

Relations (A3) and (A5) show that Uy, satisfies the in-
tegral relation of the actual front and is thus indeed a ve-
locity of an effective front. Since it vanishes for a
nonpropagating front (Uy ; =0), it is defined with respect
to the mean fresh medium M; at scale L,. Since it is nor-
mal to the front at scale L, ,, and constant on windows
W;, it finally corresponds to the normal velocity of

1

effective fronts at scale L, , ;:

Ui =Uy,s - (A10)

When front velocities are assumed to be constant along
the front, relations (A5) and (A 10) imply

U, ds;
3. Li f ;f ' :R,Zl

’_—_
UT,i*l i

, (A1)

where R, is the front rugosity at scale L;. Equality of ve-
locity enhancement =; and of rugosity R; provides an in-
teresting connection between front dynamics and front
geometry. In particular, since rugosities are always
larger than unity, the property p4 is recovered.

We emphasize that relations (A7), (A9), and (A10) pro-
vide an intrinsic link between variables at consecutive
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scales which makes the specificity of front propagation in
scale space.

APPENDIX B: COMPARISON BETWEEN DIFFERENT
RENORMALIZATION PROCEDURES
AND BETWEEN FORMALLY EQUIVALENT
SCALE-INVARIANT LAWS
IN TURBULENT COMBUSTION

In the present paper, the fixed point FP(2,8) [quadratic
relation (15)] has been obtained by an exact renormaliza-
tion of the Clavin-Williams relation (6) and has been ex-
plicitly shown to be scale invariant. However, in the
literature of turbulent combustion, two other methods for
renormalizing this relation have been applied [18,19] and
two relations formally equivalent to (15) have already
been proposed [5,18]. This appendix is then devoted to
clarifying their difference with the approach reported in
this paper and the corresponding scale-invariant relation
(15).

Schelkin first proposed relation (15) in an old paper [5]
but modified it some years later to a linear law [6]. Its
derivation was based on the so-called ‘“‘surface model” in
which the flame front is considered as being made up of a
lot of pockets of fresh gas surrounded by burnt gas. In-
troducing pockets was thought to be the only way to
achieve a large relative increase of front surface, especial-
ly since Schelkin believed that a connected front could at
most double its surface unless pockets were introduced.
Since it is derived from a phenomenological model, the
Schelkin relation is thus approximate.

Recently, Sivashinsky has obtained the following rela-
tion, formally equivalent to (15), by a single renormaliza-
tion along the scale range [18]:

2 1172
1+p02

(B1)

Its procedure is exact but, since its starting point is an ex-
pansion of = at first order in (U’/Uy )?, equivalent to the
Clavin-Williams relation (6), its validity is a priori re-
stricted to a weak turbulence regime, U’ << Uy and more
precisely to a first-order expansion in (U’ /Uy )% At this
order, it is then simply similar to the Clavin-Williams re-
lation (6) from which it is derived, in agreement with Sec.
VA.

A priori, the remark regarding the range of validity of
relation (B1) might also apply to relation (15) since it is
also derived by renormalization of the approximate rela-
tion (6) in Sec. IIB. Its exact nature has been proved,
however, by showing that it is invariant by renormaliza-
tion and thus scale invariant. On the other hand, there is
no way to show the exact nature of (B1) in the framework
of Sivashinsky since covariance by dilatation is not ad-
dressed.

Another procedure of renormalization of the Clavin-
Williams relation (6) has been proposed by Yakhot [19]
and has yielded the relation (7). Since it differs from the
relation (15) obtained on the same basis, one of them at
least is not exact. In particular, relations (17) and (18)
show that the Yakhot relation is not invariant by renor-

malization and thus fails in describing a scale-invariant
regime. In addition, as noticed by Sivashinsky [18],
Yakhot derivation would turn out, within our frame-
work, to divide relation (12) by U%,k and to fix Uy, at
the value Uy ; on the right-hand side. This renormaliza-
tion procedure is thus approximate and restricted to the
first order in (U’ /Uy )% It yields the Yakhot relation (7)
which, at this order, is similar to the Clavin-Williams re-
lation but which, when extrapolated to large values of
U'/Uy, incorrectly lowers the turbulent velocity
Ur(Ur <Ug,;) and gives rise to an artificial “bending.”

The relations previously proposed in the literature by
Yakhot and Sivashinsky from a renormalization pro-
cedure are thus approximate for two different reasons:
approximate starting point of renormalization for both
Sivashinsky and Yakhot and approximate procedure in
addition for Yakhot. The fact that renormalization is
performed only once prevents these authors from recog-
nizing whether a fixed point is reached (it is in fact so in
Sivashinsky relation). For this reason, their relations are
restricted to a weak turbulence regime, even if, as for the
Sivashinsky relation, they formally look similar to the ex-
act relation (15).

Finally, beyond a formal equivalence, the relations of
Schelkin and Sivashinsky show important differences
with the fixed point relation (15): the former one is a phe-
nomenological estimate and the validity of the latter one
is in fact restricted to a weakly nonlinear regime. In con-
trast, we emphasize that the scale-invariant relation (15)
[or more generally (75)] proposed here is derived exactly
from definite physical assumptions about the physical
process (Secs. III F and V A) and that, even if it is ob-
tained by renormalization of an approximate relation
(Sec. II B), its exact nature is assessed by the fact that it is
a fixed point. It should then apply in the whole range of
turbulence intensities for which the scale-invariance as-
sumption is valid.

APPENDIX C: ORBIT CONVERGENCE
IN THE CRITICAL SURFACE S,

Although a lot of situations concerning orbits may
occur, we want to point out that convergence towards a
fixed point should be the most usual case in the critical
surface. Accordingly, we do not consider the most gen-
eral case but make some natural assumptions about func-
tions S and turbulence scalars (U;).

From Sec. V A, we know that the only fixed point to-
wards which a function 2" defined by relations (25), (31),
and (32) might converge is FP(a, 3) satisfying

a

Ur,
LU =14 Bme, (C1)

Ur;

where m; ;| is defined in (32). At each step of renormal-
ization, a distance between renormalized functions 37
and this fixed point may be obtained from the remainder
function R P’ of the following expansions:

Uzl +1

(r)
UT,i

a

=1+Bm/ ¥ +RP(m/7,) . (C2)
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In particular, at resolutions (r) and (r + 1), relations (31)
and (39) give, respectively,

RV(m() ) =m!esV(m7) ), (C3)
j—1 U'(r) a

(r+1D), () y— k+1 (ry . (r)

R (mk+1)— 2 U(r+l) S (mk+1) (C4)
k=i T,

within the correspondence (37), (38), and the scale con-
traction (34). Let us seek conditions for which functions
R " may be shown to uniformly decrease with (r).

As a first step, let us assume that |S'”| is an increasing
function, in agreement with the property p2 expected for
3", Then relations (C4), (72), and (73) give, within the
variable renormalization (42),

iR(r+1)(m](r+Tl))’Sm[{:_*;l)a‘s(r)“ml(;ﬁ{l)) (C5)
and, by comparison with (C3),
}R(r+l)iS'R(Y}J (C6)

so that the orbit of =(r) stays in the vicinity of the fixed
point FP(a,f3).

Let us now assume that there exist (i) a positive ex-
ponent p such that the function x #|S‘”|(x) is an in-
creasing function, and (ii) a constant ¢, 0=c¢ <1, such

that, for any k, i <k <j, U'%, /U {7V <c <1, the vari-
ables being renormalized according to (42).

The latter condition is satisfied, for instance, in a
Kolmogorov-like turbulence, i.e., a turbulence such that
the ratio U7, /U;" is a constant along the scale range:
U, /U =p, (U")=(p") and finally, for i <k < j,

Ul:'(i'l « Ve
4 _
Ui T+ =c<1. (C?

Since =" > 1 (property p4), the relation (73) is satisfied:
0<my", <m;" 3" (C8)

so that the condition (i) and the relations (37) and (C7)
imply

IS (m7 ) < ckPISYmin Y (C9)

and finally from (C4), (C9), (42), and (C3):

IRV <k|RYM|, (C10)

where k =c*# is strictly smaller than one: k <1.
This ensures absolute convergence of the orbit of ="
towards the fixed point FP(a,3).
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